LeetCode打卡 52八皇后Ⅱ&53最大子序和&54螺旋矩阵

原创公众号:bigsai 希望和优秀的你做朋友,感觉不错还请一键三连。
回复进群即可加入和200+人一起打卡。上周打卡:
LeetCode 47全排列Ⅱ&48旋转图像
LeetCode 49字母异位词分组&50pow(x,n)&51八皇后

n皇后Ⅱ

n 皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。
在这里插入图片描述

上图为 8 皇后问题的一种解法。

给定一个整数 n,返回 n 皇后不同的解决方案的数量。

示例:

输入: 4
输出: 2
解释: 4 皇后问题存在如下两个不同的解法。

[
 [".Q..",  // 解法 1
  "...Q",
  "Q...",
  "..Q."],

 ["..Q.",  // 解法 2
  "Q...",
  "...Q",
  ".Q.."]
]

提示:

皇后,是国际象棋中的棋子,意味着国王的妻子。皇后只做一件事,那就是“吃子”。当她遇见可以吃的棋子时,就迅速冲上去吃掉棋子。当然,她横、竖、斜都可走一或 N-1 步,可进可退。(引用自 百度百科 - 皇后 )

n皇后问题我想跟着我们打卡的铁铁们都应该刷烂了,核心思路就是模拟试探,典型的回溯算法,如果八皇后还不会的请看这篇:回溯算法 | 追忆那些年曾难倒我们的八皇后问题

对于本题和上一题相比略有区别之处,就是让你输出满足条件的迷宫,这个也很容易啊,在执行回溯的时候维护一个字符型数组,满足条件时候将字符数组。

实现代码为:

 boolean shu[];
 boolean zuoxie[];
 boolean youxie[];
 int count=0;
public int totalNQueens(int n) {
	
	shu=new boolean[n];
	zuoxie=new boolean[n*2-1];
	youxie=new boolean[n*2-1];
	dfs(0,n);
	return count;
	
 }
 //行 map地图

private void dfs(int index,int n) {
	// TODO Auto-generated method stub
	if(index==n)//存入
	{
		count++;
	}
	else {
		for(int j=0;j<n;j++)
		{
			if(!shu[j]&&!zuoxie[index+j]&&!youxie[index+(n-1-j)])
			{
			
				shu[j]=true;
				zuoxie[index+j]=true;
				youxie[index+(n-1-j)]=true;
				dfs(index+1, n);
				shu[j]=false;
				zuoxie[index+j]=false;
				youxie[index+(n-1-j)]=false;	
			}
		}
	}
}

在这里插入图片描述
至于还有用位运算0ms的方法待维护补充。

最大子序列和

给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

示例:

输入: [-2,1,-3,4,-1,2,1,-5,4]
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。

进阶:

如果你已经实现复杂度为 O(n) 的解法,尝试使用更为精妙的分治法求解。

使用dp的方法就是O(n)的方法。如果dp[i]表示以第i个结尾的最大序列和,而这个dp的状态方程为:

dp[0]=a[0]
dp[i]=max(dp[i-1]+a[i],a[i])

也不难解释,如果以前一个为截至的最大子序列和大于0,那么就连接本个元素,否则本个元素就自立门户。

实现代码为:

public int maxSubArray(int[] nums) {
        int dp[]=new int[nums.length];
        int max=nums[0];
        dp[0]=nums[0];
        for(int i=1;i<nums.length;i++)
        {
            dp[i]=Math.max(dp[i-1]+nums[i],nums[i]);
            if(dp[i]>max)
                max=dp[i];
        }
        return max;
    }

在这里插入图片描述
至于分治算法,这题复杂度dp为O(n),分治为O(nlogn).并不算快,而分治主要运用递归的过程先分再和,如果当然函数为maxsub(int nums[],int left,int right)最大的可能在以下三种情况产生:
在这里插入图片描述
其中中间部分就是分别向左向右进行拓展取最大了。ac代码为(2ms):

public int maxSubArray(int[] nums) {

    int max=maxsub(nums,0,nums.length-1);
    return max;
}
int maxsub(int nums[],int left,int right)
{
    if(left==right)
        return  nums[left];
    int mid=(left+right)/2;
    int leftmax=maxsub(nums,left,mid);
    int rightmax=maxsub(nums,mid+1,right);

    int midleft=nums[mid];
    int midright=nums[mid+1];
    int team=0;
    for(int i=mid;i>=left;i--)
    {
        team+=nums[i];
        if(team>midleft)
            midleft=team;
    }
    team=0;
    for(int i=mid+1;i<=right;i++)
    {
        team+=nums[i];
        if(team>midright)
            midright=team;
    }
    int max=midleft+midright;//中间的最大值
    if(max<leftmax)
        max=leftmax;
    if(max<rightmax)
        max=rightmax;
    return  max;
}

螺旋矩阵

给定一个包含 m x n 个元素的矩阵(m 行, n 列),请按照顺时针螺旋顺序,返回矩阵中的所有元素。

示例 1:

输入:
[
 [ 1, 2, 3 ],
 [ 4, 5, 6 ],
 [ 7, 8, 9 ]
]
输出: [1,2,3,6,9,8,7,4,5]
示例 2:

输入:
[
  [1, 2, 3, 4],
  [5, 6, 7, 8],
  [9,10,11,12]
]
输出: [1,2,3,4,8,12,11,10,9,5,6,7]

分析
本题是顺时针返回矩阵中的所有数字,而大致有两个方法。
法一用一个坐标点进行移动维护,右下左上四个方向循环,并且用boolean数组标记。最后返回输出结果,当然这种方法我没有实现因为比较麻烦。

法二数学方法
可以把矩形最外圈分成四份,每次可以根据数学规律找到数字。
如果最短的那边是偶数没啥问题:
在这里插入图片描述

但是如果是奇数的话需要特殊考虑最后的剩余情况:
在这里插入图片描述
具体怎么处理看个人,我这里是在循环之外特殊处理的。

具体代码为:

public List<Integer> spiralOrder(int[][] matrix) {
    List<Integer>list=new ArrayList<Integer>();
    if(matrix==null||matrix.length==0)return list;
	int m=matrix.length;
	int n=matrix[0].length;
	int min=Math.min(m, n);
    int index;
	for( index=0;index<min/2;index++)
	{
		for(int i=index;i<n-index-1;i++)//最上面
		{
			list.add(matrix[index][i]);
		}
		for(int i=index;i<m-index-1;i++)
		{
			list.add(matrix[i][n-index-1]);
		}
		for(int i=n-index-1;i>index;i--)
		{
			list.add(matrix[m-index-1][i]);
		}
		for(int i=m-index-1;i>index;i--)
		{
			list.add(matrix[i][index]);
		}
		
	}
       if(min%2==1)
       {
           for(int i=index;i<=n-index-1;i++)//最上面
		{
			list.add(matrix[index][i]);
		}
		for(int i=index+1;i<=m-index-1;i++)
		{
			list.add(matrix[i][n-index-1]);
		}
       }
	return list;
   }

在这里插入图片描述
最后,给大家推荐一门挺好的数据结构与算法的视频课程,老师语速较慢,适合1.5倍速。

在这里插入图片描述

Big sai CSDN认证博客专家 数据结构与算法 爬虫 Java
原创公众号:「bigsai」,回复【bigsai】获取珍藏pdf书籍资源,回复【进群】即可加入leetcode打卡群。分享Java,数据结构与算法,python爬虫知识,期待和优秀的你成为朋友!
©️2020 CSDN 皮肤主题: 代码科技 设计师:Amelia_0503 返回首页
实付 19.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值